250 research outputs found

    Solving the TTC 2011 Reengineering Case with GReTL

    Full text link
    This paper discusses the GReTL reference solution of the TTC 2011 Reengineering case. Given a Java syntax graph, a simple state machine model has to be extracted. The submitted solution covers both the core task and the two extension tasks.Comment: In Proceedings TTC 2011, arXiv:1111.440

    The Impact of Spin-Orbit Interaction on the Image States of High-Z Materials

    Get PDF
    Due to many important technical developments over the past two decades angle-resolved (inverse) photoemission has become the method of choice to study experimentally the bulk and surface-related electronic states of solids in the most detailed way. Due to new powerful photon sources as well as efficient analyzers and detectors extremely high energy and angle resolution are achieved nowadays for spin-integrated and also for spin-resolved measurements. These developments allow in particular to explore the influence of spin-orbit coupling on image potential states of simple metals like Ir, Pt, or Au with a high atomic number as well as new types of materials as for example topological insulators. Herein, fully relativistic angle- and spin-resolved inverse photoemission calculations are presented that make use of the spin-density matrix formulation of the one-step model. This way a quantitative analysis of all occupied and unoccupied electronic features in the vicinity of the Fermi level is achieved for a wide range of excitation energies. Using this approach, in addition, it is possible to deal with arbitrarily ordered but also disordered systems. Because of these features, the one-step or spectral function approach to photoemission permits detailed theoretical studies on a large variety of interesting solid-state systems.y

    On uncertainty quantification of eigenvalues and eigenspaces with higher multiplicity

    Full text link
    We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results

    Parasites promote host gene flow in a metapopulation

    Get PDF
    Local adaptation is a powerful mechanism to maintain genetic diversity in subdivided populations. It counteracts the homogenizing effect of gene flow because immigrants have an inferior fitness in the new habitat. This picture may be reversed in host populations where parasites influence the success of immigrating hosts. Here we report two experiments testing whether parasite abundance and genetic background influences the success of host migration among pools in a Daphnia magna metapopulation. In 22 natural populations of D. magna, immigrant hosts were found to be on average more successful when the resident populations experienced high prevalences of a local microsporidian parasite. We then determined whether this success is due to parasitism per se, or the genetic background of the parasites. In a common garden competition experiment, we found that parasites reduced the fitness of their local hosts relatively more than the fitness of allopatric host genotypes. Our experiments are consistent with theoretical predictions based on coevolutionary host-parasite models in metapopulations. A direct consequence of the observed mechanism is an elevated effective migration rate for the host in the metapopulatio

    Saying Hello World with GReTL - A Solution to the TTC 2011 Instructive Case

    Full text link
    This paper discusses the GReTL solution of the TTC 2011 Hello World case. The submitted solution covers all tasks including the optional ones.Comment: In Proceedings TTC 2011, arXiv:1111.440

    Converging seasonal prevalence dynamics in experimental epidemics

    Get PDF
    Background Regular seasonal changes in prevalence of infectious diseases are often observed in nature, but the mechanisms are rarely understood. Empirical tests aiming at a better understanding of seasonal prevalence patterns are not feasible for most diseases and thus are widely lacking. Here, we set out to study experimentally the seasonal prevalence in an aquatic host-parasite system. The microsporidian parasite Hamiltosporidium tvärminnensis exhibits pronounced seasonality in natural rock pool populations of its host, Daphnia magna with a regular increase of prevalence during summer and a decrease during winter. An earlier study was, however, unable to test if different starting conditions (initial prevalence) influence the dynamics of the disease in the long term. Here, we aim at testing how the starting prevalence affects the regular prevalence changes over a 4-year period in experimental populations.Results In an outdoor experiment, populations were set up to include the extremes of the prevalence spectrum observed in natural populations: 5% initial prevalence mimicking a newly invading parasite, 100% mimicking a rock pool population founded by infected hosts only, and 50% prevalence which is commonly observed in natural populations in spring. The parasite exhibited similar prevalence changes in all treatments, but seasonal patterns in the 100% treatment differed significantly from those in the 5% and 50% treatments. Populations started with 5% and 50% prevalence exhibited strong and regular seasonality already in the first year. In contrast, the amplitude of changes in the 100% treatment was low throughout the experiment demonstrating the long-lasting effect of initial conditions on prevalence dynamics.Conclusions Our study shows that the time needed to approach the seasonal changes in prevalence depends strongly on the initial prevalence. Because individual D. magna populations in this rock pool metapopulation are mostly short lived, only few populations might ever reach a point where the initial conditions are not visible anymore
    corecore